A New Synthetic Approach to the Carbapenem Antibiotic PS-5 from Ethyl (S)-3-Hydroxybutanoate

Toshiyuki CHIBA[†] and Takeshi NAKAI*

Department of Chemical Technology,
Tokyo Institute of Technology, Meguro-ku, Tokyo 152

A new synthetic route to the PS-5 key precursor is described which involves the fully stereocontrolled transformation of the optically active 2-azetidinone derivative easily obtainable from ethyl (S)-3-hydroxybutanoate.

The carbapenem antibiotic (+)-PS-5 (1) has currently been the focus of considerable synthetic activities. In an effort to develop new synthetic routes to carbapenem antibiotics from (R)- or (S)-3-hydroxybutanoic esters (2) which are commercially available in large quantity, we have recently reported that the enolate-imine condensation of (S)-2 with the silylimine generated in situ from trimethylsilylpropynal affords the 2-azetidinone derivative (+)-3 as a major product. We now wish to report a facile scheme for the stereocontrolled transformation of (+)-3 to a PS-5 key precursor.

The following scheme depicts the newly-developed sequence starting with (+)-3 prepared from (S)-2 of ca. 80% ee. 5) First, the hydroxy group on the side chain was removed by bromination followed by reduction with zinc to give the 3-ethyl derivative (4); 6 [α] $_{D}^{20}$ -41.1° (c 1.0%, CHCl $_{3}$), which was then subjected to the hydration/Baeyer-Villiger sequence 7 to afford the 4-acetoxy derivative (5) 6 with 3,4-cis configuration ($J_{3,4}$ =4.2 Hz); [α] $_{D}^{22}$ -113.9° (c 0.99, CHCl $_{3}$). The reaction of 5 with the silyl enol ether (6), prepared by the reported method, 2a proceeded with complete inversion of configuration at C-4 to give the 3,4-trans adduct (7); 6 [α] $_{D}^{17}$ +47.8° (c 0.60, CHCl $_{3}$).8) The thermal cyclization of 7 carried out according to the reported procedure 9 gave rise to the desired PS-5 precursor (8), of which the IR and NMR data are in accord with the reported values. 2a Since the precursor 8 has already been converted to (+)-PS-5, 2 we have now completed the formal synthesis of (+)-PS-5 from the easily available (S)-3-hydroxybutanoic ester.

[†] Visiting Research Fellow from Fujisawa Pharmaceutical Co., Ltd., Osaka.

2188 Chemistry Letters, 1987

$$(+)-3 \qquad \frac{\underline{a}, \, \underline{b}}{(49\%)} \qquad 0 \qquad \frac{\underline{c}, \, \underline{d}}{(50\%)} \qquad 0 \qquad \underbrace{\frac{\underline{c}, \, \underline{d}}{(50\%)}}_{NH} \qquad 0 \qquad \underbrace{\underline{c}, \, \underline{d}}_{NH} \qquad 0 \qquad \underline{d}_{NH} \qquad 0 \qquad \underbrace{\underline{c}, \, \underline{d}}_{NH} \qquad 0 \qquad \underbrace{\underline{d}, \, \underline{d}}_{NH} \qquad 0 \qquad \underline{d}_{NH} \qquad 0 \qquad \underline{d}_{N$$

 \underline{a} : CBr_4/PPh_3 , THF; \underline{b} : Zn/HCO_2H , $\underline{N},\underline{N}$ -Dimethylformamide; \underline{c} : $H_2SO_4/HgSO_4$, aq. THF; \underline{d} : \underline{m} -Chloroperbenzoic acid, AcOEt; \underline{e} : $CH_2=C(OSiMe_3)-CN_2-CO_2PNB$ (6)/ $Me_3SiOSO_2CF_3$, CH_2Cl_2 ; \underline{f} : Reflux in hexane in the presence of $Rh_2(OCOC_7H_{15}-\underline{n})_4$

In summary, we have now developed a new synthetic route to the optically active PS-5 key precursor from the inexpensive chiral starting material. Further improvement of the present approach is now in progress.

The authors are grateful to Dr. Takao Takaya for his helpful discussion.

References

- 1) Isolation: K. Yamamoto, T. Yoshioka, Y. Kato, M. Shibamoto, K. Okamura, Y. Shimauchi, and T. Ishikura, J. Antibiot., 33, 796 (1980).
- 2) Recent syntheses of (+)- and (±)-PS-5: a) T. Kametani, T. Honda, A. Nakayama, Y. Sasaki, T. Mochizuki, and K. Fukumoto, J. Chem. Soc., Perkin Trans. 1, 1981, 2228; b) D. Favara, A. Omedei-Salė, P. Consonni, and A. Depaoli, Tetrahedron Lett., 23, 3105 (1982); c) C.-N. Hsiao, S. P. Ashburn, and M. J. Miller, ibid., 26, 4855 (1985); d) D. Hart, C.-S. Lee, W. H. Pirkle, M. H. Hyon, and A. Tsipouras, J. Am. Chem. Soc., 108, 6054 (1986); e) D. A. Evans and E. B. Sjogren, Tetrahedron Lett., 27, 3119 (1986); f) N. Yamazaki, M. Murakami, and T. Mukaiyama, Chem. Lett., 1986, 1013.
- 3) Review: T. Nakai and T. Chiba, Farumashia, $\underline{22}$, 611 (1986). For the synthetic route to the thienamycin key precursor from (\underline{R}) -2, see: T. Chiba and T. Nakai, Tetrahedron Lett., 26, 4647 (1985), and references cited therein.
- 4) T. Chiba, M. Nagatsuma, and T. Nakai, Chem. Lett., 1985, 1343.
- 5) The yield of each step has not been optimized yet.
- 6) The IR and ¹H NMR spectral data of these intermediates are in accord with the reported values ^{2a,b)} and/or the assigned structures.
- 7) T. Chiba and T. Nakai, Chem. Lett., 1985, 651.
- 8) Lit. ^{2b)} $[\alpha]_{D}^{22}$ +64.7° (c 1.0, CHCl₃); $\overline{J_{3.4}}$ = 2.0 Hz.
- 9) T. Salzmann, R. W. Rarcliff, and B. G. Christensen, Tetrahedron Lett., 21, 31 (1980)

(Received August 12, 1987)